Modeling Nearshore Dynamics of Extreme Storms in Complex Environments of Connecticut

Chang Liu, Yaprak Onat, Yan Jia, James O’Donnell

Connecticut Institute for Resilience and Climate Adaptation, University of Connecticut, Groton, CT
Background

• Flood hazard planning requires the accurate estimation of total water elevation.
• The coastal topography and nearshore circulation conditions impact the flood mapping in complex environments.
• Some conventional approaches are flawed in several ways:
 – 1) using bathtub approach,
 – 2) insufficient resolutions or model physics
 – 3) failing to calibrate and validate with real-time data, or
 – 4) not considering sea-level rise
Existing Flood Map Products

- FEMA Flood Insurance Map
- North Atlantic Coast Comprehensive Study (NACCS)
- CIRCA FVCOM-SWAVE
Objectives

• Create accurate flood maps using a capable, high-resolution wave model to determine total water elevation on the shores
• Validate the models with observations
• Examine local sea-level rise predictions of storms with 1% (100-year) and 10% (10-year) annual exceedance probability by the year 2050 in Connecticut
Study Area
Model Setup

- FUNWAVE-TVD: phase-resolving wave model
- Wavemaker generates waves with specified wave height, frequency, and direction
- Grid resolution 2 m (6.5 ft)
- Simulate 1% (100-year) and 10% (10-year) annual exceedance probability
Validation: High Water Level

- Compare with observed high water during super storm Sandy
- Modeled values are close to observations

![Graph showing modeled and observed high water levels with RMSE values of 0.25 m and 0.38 m for Fairfield.](image-url)
Validation: Wave Height

• Compare with observed wave height at stations near breakwaters in 2015
• Model forced with wave characteristics observed at NH1, compare modeled vs observed values at NH2

<table>
<thead>
<tr>
<th>Date</th>
<th>Observed</th>
<th>Modeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/25</td>
<td>0.69</td>
<td>0.56</td>
</tr>
<tr>
<td>02/02</td>
<td>0.59</td>
<td>0.47</td>
</tr>
<tr>
<td>03/26</td>
<td>0.44</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Significant Wave Height at NH2 (meters)
Comparison with FEMA (100-year)
Comparison with FEMA (100-year)
Comparison with NACCS (100-year)
Comparison with FVCOM-SWAVE
10-yr with sea-level rise
Summary

• The FUNWAVE-TVD model is found to model wave processes more accurately in shallow water regions compared to the empirical equation application of FEMA and coupled circulation-phase averaged model application of NACCS and FVCOM-SWAVE.

• We also examined local sea-level rise predictions of storms with 1% (100-year) and 10% (10-year) annual exceedance probability by the year 2050 in Connecticut and found that the flood extent of these two storms showed little to no difference due to the topographic conditions.

• We suggest the planning approaches consider the increase in the frequency of the storms in the predicted inundation zones due to sea-level rise.
THANK YOU

Questions?