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Executive Summary 
Cities across the United States are challenged to make decisions on accommodating growth and 

promoting healthy communities in the face of climate change. In the last 30 years, extreme heat events 

have been the deadliest weather-related hazards in the United States. A recent report from the Yale 

Center for Climate Change and Health (Bozzi 2020) indicates that Connecticut residents are less adapted 

to heat and are more vulnerable to heat-related illnesses under extreme heat conditions than the 

average American. It also indicates that Connecticut has a significant proportion of the population that is 

more vulnerable to heat, such as those above 65 years of age, outdoor workers, and homeless people. 

More importantly, the report suggests that the pathway to adaption should involve land use planning 

and urban design.  

In order to adequately address heat vulnerability, we need to understand the interactions between land 

surfaces and temperature to support climate-oriented decision making. Climate data from weather 

stations is limited in urban areas and data on air temperature are typically captured in the shade and far  

from construction. To overcome these limitations, this project is grounded in previous studies in urban 

climatology and uses satellite imagery to understand the occurrence and intensification of urban heat 

islands in cities.  Moreover, it seeks to generate transferable knowledge to fields such as urban planning, 

to support Connecticut towns in addressing and adapting to heat vulnerability.  

This project combines remote sensing and localized sensor measurements to identify and understand 

the relationship between temperature and land cover. It focuses on Fairfield and New Haven counties in 

the state of Connecticut, with the possibility of expanding the analysis to the entire state.  Our team 

used readily available satellite data (Landsat collection) and land cover classification methods and 

datasets to understand how changes to the landscape in these counties have impacted surface 

temperature in the last 20 years. In other words, this project asked the question: what changes to the 

landscape have promoted or intensified the occurrence of urban heat islands? 

The findings from this study indicate that the appearance and intensification of urban heat islands in 

Fairfield and New Haven counties are linked to the loss of vegetation due to expansion and 

intensification of urbanization. More importantly, the study indicates that specific types of vegetation 

loss, particularly forest cover, have resulted in the biggest temperature spikes within the last 20 years. 

The results also indicate that though vegetation reduces the occurrence of urban heat islands, trees are 

far more effective in cooling surfaces for the purposes of human health and well-being.  
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1. Introduction 
Extreme heat and cold are among the leading causes of climate vulnerability in the United States due to 

potential impacts on human health and well-being. Residents in Connecticut are less acclimatized to 

heat, which could signify a higher risk for heat-related diseases during extreme weather events. The 

occurrence of heat islands due to urbanization produce relatively warmer air temperatures near the 

ground, which make urban and sub-urban areas warmer in comparison to rural areas. This project 

identifies variations in surface and air temperature over time and their linkages to land cover and land 

uses changes. Such observations can lead to the determination of the occurrence and intensification of 

urban heat islands and are directly linked to land-use planning, health, and hazard mitigation, among 

other fields of decision-making. Therefore, the results of this project are critical to support local 

decision-makers in determining the thermal vulnerability of local communities in the Resilient 

Connecticut project. 

The main objective of this study was to map and identify areas vulnerable to extreme thermal conditions 

and identify the contribution of the changes in land use and land cover to heat vulnerability. To do so, 

this project was tasked to: (1) analyze land surface temperature data, acquired from satellite images, to 

identify areas where heat islands are occurring; (2) understand the linkages between land surface 

temperature (LST) changes and land use and land cover (LULC) changes, to interpret the relationships 

between thermal variation and urbanization over the past 5- and 20-years; and (3) compare the urban 

heat island intensity on human health and well-being by using air temperature and Landsat land surface 

temperature. 

1.1. What is Land Surface Temperature and What is its Application? 
In simple terms, land surface temperature (LST) is the temperature that any given surface of the Earth 

would feel to the human touch. It varies depending on the surface, as each material differs on how it 

absorbs or conducts heat. Therefore, LST is not the same as air temperature, which we are accustomed 

to seeing in a weather report. Yet it is a useful and established proxy to understanding the occurrence of 

urban heat islands (UHI) (Voogt and Oke 2003, Weng and Quattrochi 2006).  Though LST differs from air 

temperature, there is a relationship between them. For instance, imagine hovering your hand over a hot 

pan. As the surface of the pan heats up, so does the air that surrounds it. Therefore, as you hover your 

hand over the surface you feel the effects of the heat emitted from the pan in the air. So why not simply 

measure the air temperature? It is important to note that meteorological data is not widely available 

and weather stations are typically not sited in urban locations. Also, stations typically collect data in the 

shade and do not offer long-term information on temperature variations in different land cover types. 

Hence the use of thermal satellite data, which has been available since the early 1980s when NASA 

launched Landsat satellite missions 4 and 5. 

Urban heat islands (UHI) in simple terms are the effect of changes in land cover which alter surface 

temperature and ultimately change the transference of heat to the air. Past studies have indicated that 

UHIs are more evident within urban environments with satellite data and are strongly related to land 

cover (Aniello et al. 1995, Dousset and Gourmelon 2003). Moreover, studies in heat vulnerability have 

indicated that LST can be a strong predictor of heat related mortality during extreme heat events 

(Johnson and Wilson 2009, Johnson, Wilson and Luber 2009, Dousset et al. 2011). 
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So far, the use of thermal satellite images has produced better understandings of the relationships 

between urban surfaces, specifically LULC, to temperature changes in urban environments (Weng, Lu 

and Schubring 2004, Yuan and Bauer 2007, Buyantuyev and Wu 2010, Zhou, Huang and Cadenasso 2011, 

Zhou et al. 2014, Fu and Weng 2016). Yet, as described by Zhou et al. (2014), vegetation abundance and 

impervious cover are consistently identified as the most important determinants of LST increases. 

However, the simple division between ‘rural’ (vegetated) and ‘urban’ (impervious surface area) do not 

account for the complexities of the land covers observed in our environments, as discussed by Stewart 

and Oke (2012). With that in mind, this study goes further and uses LST and different land cover 

classifications to try to better understand what types of land cover and land-uses result in higher or 

lower temperature variation. This information can support decision-making that fosters conservation of 

critical landscapes and supports the restoration and promotion of native greening within the state of 

Connecticut. 

2. Methods 

2.1. Land-use and Land Cover (LULC) Classification 

2.1.1. Local Climate Zones 
In the first phase of the project the team applied the local climate zones (LCZ) classification (Stewart and 

Oke 2012, Stewart, Oke and Krayenhoff 2014) to understand the current land cover types and how they 

relate to surface temperature variations (Figure 2.1). The LST classification is informed by fields such as 

architecture and land use planning to understand how density, impervious cover, and presence of 

vegetation affect local climate. This is not a readily available classification; however, it can inform 

decision-making, particularly for towns that are moving from Euclidean based land-use planning to form 

based planning codes. However, LST is mostly focused on urban environments and does not classify 

natural environments with the same level of complexity as it does developed landscapes. 

The team relied on the World Urban Database and Access Portal Tools (WUDAPT) methodology 

developed to systematically apply the LST classification (Ching et al 2018). WUDAPT is a machine 

learning method that relies on Landsat imagery to classify existing land cover type (Bechtel et al 2019). 

When the project began the team followed the workflow using Google Earth Pro and SAGA GIS, as 

proposed by Bechtel et al 2019. All products produced were submitted through the WUDAPT portal for 

quality assessment. However, in 2021 WUDAPT developed the LCZ generator led by a team of 

researchers in Ruhr University Bochum and the team no longer relied on the previous workflow, and 

followed new protocols established by Demuzere, Kittner, and Bechtel (2021). The data developed for 

both Fairfield (Miller 2021) and New Haven (Day 2021) counties was submitted separately in the LCZ 

generator and are readily available in the LCZ Generator portal (https://lcz-

generator.rub.de/submissions).  

It is important to point out that both Fairfield and New Haven counties are not densely urbanized areas 

when compared to other regions in the U.S. and abroad. Therefore, not all LCZ types were identified in 

the study area, as presented in the results. For example, LCZ type 1 – Compact high-rise is not present in 

either of the studied counties, nor was LCZ type 4 – Open high-rise. Other types were also less prevalent 

and limited the machine learning approach due to the specifications needed by the workflow to indicate 

at least 5 sample areas with a minimum of 1km2 (247 acres).  

https://lcz-generator.rub.de/submissions
https://lcz-generator.rub.de/submissions


9 
 

 

Figure 2.1 – Local Climate Zone classification and description (Source: Stewart and Oke 2012).  
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The first portion of analysis using the old WUDAPT methodology allowed our team to analyze 10 sets of 

Landsat 8 Tier 1 images, with cloud cover below 10%, for the years of 2019 (July, August, September, 

and November 2019, and February 2020) and 2015 (January, March, April, August, and October). The 

images used in the machine learning process, proposed by WUDAPT, used samples from various seasons 

to ensure that we were classifying the climate zones correctly. During summer and spring, the lush tree 

canopy cover often obscures development in satellite images. By using multiple seasons, we were able 

to identify many areas that were initially classified as forested but were in fact sparsely built. All images 

were clipped to a region of interest that encompasses a 20km buffer from the outer edges of each 

county’s boundary, including surrounding towns. This approach follows the methodology outlined by 

WUDAPT and allowed a better assessment of the diversity of land cover types that currently exist within 

the region.  

2.1.2. LCZ Heat Sensor Network 
As a starting point for the LCZ classification the team established the city of New Haven as a prototype 

to streamline the land cover methodology for the entire study area. This approach enabled the team to 

develop a classification library that depicts the LCZ classification as seen in the region (Appendix 1). 

Moreover, the initial classification of New Haven allowed for the deployment of a heat and humidity 

sensor network to retrieve data based on different LCZ classification types identified in the city. The 

network is composed of 20 sensors deployed in New Haven (Figure 2.2) and the analysis period 

presented in this report corresponds to consistent data retrieved between August 2020 and October 

2020. Some sensors malfunction after the analysis period and were substituted. This allowed the team 

to evaluate the distribution and adequate representation of the LCZ types identified in the region. Some 

of the sensors were relocated to better represent the LCZ classes and a new round of measurements 

began in the summer of 2021. 

 

Figure 2.2 – Sensor network deployed in New Haven in August 2020. The network composed of 20 sensors 
represents 10 different local climate zones (LCZs) identified in New Haven.  
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The data retrieved from the sensors was extracted in tabular form. The analysis focused on mean and 

maximum temperatures reached during the studied period and evaluated the resulting heat index. The 

heat index is a common metric used by the CDC and National Weather Service (NWS) to determine the 

sensation of heat and its potential health risks. The heat index is a useful metrics to understand the 

impacts of heat in the human body. For instance, at high temperature and high humidity the human 

body struggles to perspire, therefore, it is unable to cool down.  

To assess the heat index for the readings gathered the team applied a series of equations depending 

upon the readings obtained. If heat index results were below 80 oF the simplified heat index equation 

was applied (Equation 1). However, for heat index above 80 oF, temperature between 80 oF and 87 oF, 

and relative humidity greater than 85% the Rothfusz equation (Equation 2) was applied followed by an 

adjustment added to the resulting heat index (Equation 3) (Rothfusz 1990).  

HI = 0.5 * {T + 61.0 + [(T-68.0)*1.2] + (RH*0.094)’ 

Where: 
HI= Heat Index 
T= Temperature (degrees Fahrenheit)  
RH= Relative Humidity (percentage) 

Equation 1 

 

HI = -42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH - .00683783*T*T - 

.05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH - .00000199*T*T*RH*RH 

Equation 2 

 

ADJUSTMENT = [(RH-85)/10] * [(87-T)/5] 

Equation 3 

2.1.3. National Land Cover Dataset (NLCD) 
The National Land Cover Dataset (NLCD) is a readily available land cover classification developed by the 

U.S. Geological Survey (USGS) in cooperation with the Multi-Resolution Land Characteristics Consortium 

(MRLC). This dataset is derived from Landsat satellite images and land cover products result from three-

year analysis periods for the contiguous U.S. and Puerto Rico. This study used land cover products for 

2001 (based on years 1999 to 2001), 2006 (based on years 2004 to 2006), 2011 (based on years 2009-

2011), and 2016 (based on years 2014-2016). The land cover products were used to develop change 

analysis retrieved using two approaches: (a) the generation of a land cover change map containing 

coded values for observed land cover (Table 2.1); and (b) the generation of a land cover change matrix, 

indicating the areal coverage of changes for Fairfield and New Haven counties. These representations 

were then used to statistically interpret how land cover change might contribute to increases in surface 

temperature. 
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Table 2.1 – NLCD class code correspondence table from 2001 to 2016. 

Description 
NLCD class 
code 

Open water 11 

Perennial ice, snow 12 

Urban, recreational grasses 21 

Low intensity residential 22 

High intensity residential 23 

Commercial, industrial, roads 24 

Bare rock, sand 31 

Quarry, strip mine, gravel pit 31 

Transitional barren 31 

Deciduous forest 41 

Evergreen forest 42 

Mixed forest 43 

Shrubland 52 

Orchards, vineyards, other 82 

Grasslands, herbaceous 71 

 

LCZ and NLCD are complementary datasets that enable the understanding of the diversity of both 

vegetated and developed environments. Contrary to the LCZ classification, NLCD offers a wider variety 

of classifications for natural landscapes versus urban landscapes. It divides urban environments in only 

four categories, while LCZ provides ten distinct categories (Figure 2.3 and Appendix 2). Yet, as previously 

mentioned, NLCD is a long standing and readily available dataset that would support immediate action 

for decision-makers, whereas LCZ is not widely used. Furthermore, the WUDAPT methodology applied 

to obtain the LCZ classification is still evolving. The machine learning approach seems to render higher 

accuracy in dense urban areas and seems to be less refined to interpret suburban areas with less urban 

density and a higher diversity of vegetation types. Both Fairfield and New Haven Counties did not 

present categories such as compact high-rise and compact mid-rise that are present in dense urban 

areas. While open mid-rise had a limited amount of sampling available, which limit the accuracy of the 

classification.  Most importantly, the use of both datasets aids in overcoming the LCZ limitations. It also 

enables the understanding of what specific types of vegetation are loss versus what specific types of 

development is gained. This combination could be the key to outlining a path to heat response planning 

as a component of city planning and conservation. 
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Figure 2.3 – Comparison between the National Land Cover Dataset (NLCD) classification and the Local Climate 
Zone (LCZ) classification. Categories differ in the complexity offered between natural and urban landscapes.  
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2.2. Thermal Remote Sensing 
The methodology applied for thermal remote sensing in this project is based on methods outlined by 

Ermida et.al. (2020), and its resulting GEE code repository that allowed us to compute LST and 

supplementary data from Landsat collections. This approach for urban heat island analysis was presented 

by NASA’s Earth Science Applied Sciences program and is integrated in the Applied Remote Sensing 

Training program (ARSET, 2020). Moreover, the methodology proposed by Ermida et al. (2020) is 

calibrated and validated with in-situ LST measurements. The choice of a readily available methodology for 

retrieving satellite remote sensing for urban heat islands allows for the replicability of this study to the 

entire state of Connecticut, and ensures that the data derived is comparable to other ongoing urban heat 

island analysis developed at the regional and national scale.   

The free and open sourced code used in this study follows a processing chain in GEE to derive LST outputs 

(Figure 2.4). The process chain retrieves data from different datasets available in the GEE database 

repository. The chain first derives the input data needed to compute LST. Top of atmosphere (TOA) 

brightness temperature is acquired using Landsat’s therma l infrared (TIR) bands.  Atmospheric 

contributions to the TIR observations are accounted for using Total Column Water Vapor (TCWV) values 

retrieved from the NCEP/NCAR reanalysis data. Surface emissivity and NDVI are derived as part of the 

input data needed to derive the LST. Cloud masking is also applied throughout the chain process, as seen 

in Figure 1. We derived data from the Landsat 5 and 8 satellites Tier 1 collection, given the timeframe of 

analysis (1999-2019), which is fully implemented in GEE.  Adaptions made to the script included changes 

to the geographic location, centered on Fairfield and New Haven counties, and date and range 

parameters. 

A total of 89 images were analyzed for the 5-year study period (1 January 2015 to 31 December 2019), 

while 238 images were used for the 20-year analysis period. Due to the Landsat Acquisition plan, images 

retrieved from both Landsat 5 and Landsat 8 were collected every 16 days and retrieval time varied 

between approximately 3:15 p.m. for Landsat 5 and approximately 3:30 p.m. for Landsat 8 (+/- 15 minutes, 

mean local time).  
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Figure 2.4 – Google Earth Engine process chain developed by Ermida et al. (2020) to retrieve Land Surface 
Temperature (LST) using the Landsat collection. Text in gray indicates the GEE dataset repository used to calculate 

the process. While the text in blue indicates the code functions that are embedded as modules. (Image source: 
Ermida et al. 2020). 
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2.2.1. Surface Emissivity 
As mentioned previously, the surface emissivity data derived in this project is a required input for the 

LST retrieval algorithm used in GEE. This data is derived from the ASTER GEDv3 dataset developed by 

Hulley et al. (2015). This dataset corresponds to the average of all TIR retrievals (5 bands) over an eight -

year period. Accuracy of the emissivity data was of approximately 0.01, with spatial resolution of 100m 

(Ermida et al. 2020). This process needs to account for vegetation density which is accomplished 

through the incorporation of fraction of vegetation cover (FVC) (Malakar et al., 2018; Parastatidis et al., 

2017). Therefore, the emissivity outputs for this phase of the project was corrected using FVC, derived 

from NDVI inputs. The GEE code provided by Ermida et al. (2020), follows the relationship proposed by 

Carlson and Ripley (1997):  

 

𝐹𝑉𝐶 =  (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒

𝑁𝐷𝑉𝐼𝑣𝑒𝑔 − 𝑁𝐷𝑉𝐼𝑏𝑎𝑟𝑒

)

2

 

Equation 4 

  

Figure 2.5 - Emissivity map aligns with previous studies and indicates highest emissivity from water bodies. 
Variation in emissivity is present in more urbanized area. 

As seen in Figure 2.5, the resulting emissivity map confirms findings from previous studies. The variation 

in material composition and ranging albedo in urbanized areas leaves a clear signature. The results 

obtained align with findings from Mitraka et al. (2011), which show that darker surface materials have 

average emissivity equal to 0.979, while high-albedo construction materials have mean emissivity value 

equal to 0.94. Vegetation emissivity is estimated on average to equal 0.987, while soil types have a 

mean emissivity of 0.973. 
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2.2.2. Normalized Difference Vegetation Index (NDVI) 
NDVI is a needed input to generate the FVC, and accounts for variations in annual and inter-annual 

vegetation density, averaged out in the TIR retrieval process of the ASTER GEDv3 dataset. Following the 

GEE process chain, NDVI is retrieved using both Landsat derived NDVI and mean ASTER GEDv3 NDVI 

(Malakar et al., 2018). The code was altered to generate the mean NDVI for the study period (January 1, 

2014 to December 31, 2019). 

 

Figure 2.6 – Normalized difference vegetation index (NDVI) derived in Google Earth Engine for the period between 
January 1, 2014 to December 31, 2019. Image is the result of the mean of all clear pixels available during the study 

period. Areas with low NDVI values indicate no presence or low plant health. 

The NDVI results (Figure 2.6) also aligned with expected findings, showing clear signatures of no 

vegetation and reduced health in and around developed areas. Major expressways have clear signatures 

on the landscape. Water bodies are also clearly depicted given the inexistence of vegetation in these 

surfaces. 

2.2.3. Land Surface Temperature (LST) 
LST was retrieved by the code using the statistical mono-window (SMW) algorithm from the Climate 

Monitoring Satellite Application Facility (CM-SAF). This method uses simple linear regression to linearize 

the radiative transfer equation and maintain the dependence on surface emissivity (Equation 5). In other 

words, it examines the relationship between TOA brightness temperatures in each TIR channel and LST.  

 

𝐿𝑆𝑇 = 𝐴𝑖

𝑇𝑏

𝜀
+ 𝐵𝑖

1

𝜀
+ 𝐶𝑖  

Equation 5 
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where Tb is the TOA brightness temperature in each TIR channel, ԑ is the surface emissivity for the 

channel, and Ai, Bi, and Ci are the result of linear regressions of radiative transfer simulations for 10 

classes of TCWV (i=1 through 10).  

The code was altered to derive three (3) LST outputs that could summarize the amplitude of land surface 

temperature. The original code sought to represent the first clear image for a given time range. For this 

study, the code was altered to compute the mean, maximum, or minimum temperatures reached. 

Additionally, the time range was broadened from days to years.  

  

Figure 2.7 – Maximum Land Surface Temperature retrieved from January 1, 2014 to December 31, 2019. Surface 
temperatures during the studied period varied vastly. Ocean water was the coolest area found, while urban 

environments reached maximum of 141.7 degrees Fahrenheit.  
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Figure 2.8 - Mean Land Surface Temperature retrieved from January 1, 2014 to December 31, 2019. Surface 
temperatures during the studied period varied vastly. Similar to maximum temperature, ocean water was the 

coolest surface found, while urban environments reached on average of 99.84 degrees Fahrenheit. 

Figure 2.7 and 2.8 depict maximum and mean LST analysis. In both images urban centers are highlighted 

and show a clear distinction between the cool surrounding water bodies and vegetated environments 

and the warm thermal signature experienced in urban areas. However, in contrast, Figure 2.9 shows 

how the urban environment during winter months can become colder than its surrounding 

environments. The combined understanding of the three images retrieved in this study indicate the 

thermal variation of these environments. Moreover, the contrasting low temperatures correspond to 

snow accumulation and potential impacts of impervious covers under maximum and minimum thermal 

conditions. 
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Figure 2.9 – Minimum Land Surface Temperature retrieved from January 1, 2014 to December 31, 2019. Contrary 
to maximum and mean images urban areas were coolest surfaces found reaching -4.43 degrees Fahrenheit. 

Vegetated areas displayed the highest temperatures up to 99.84 degrees Fahrenheit. 

3. Results 
3.1. Short-term LULC Changes: Local Climate Zones 
The first iteration of this phase of analysis showed some discrepancies with maps indicating a pessimistic 

classification that found a higher level of urbanization in the analyzed region or an overly optimistic 

classification that showed a much higher level of forested cover. This iteration indicated predominance 

of open low-rise and large low-rise in the coastal shoreline towns, and higher presence of sparsely built 

or dense forest type land covers in the interior towns. As illustrated in Appendix 2, which shows the 

iterations of classification for the 5-year study period for both counties. The second iteration was better 

calibrated yet there were conflicts between the edge towns of the counties, which indicated variations 

in interpretation from the machine learning system. To resolve this, further training zones were created 

and a revision on the parameters were proposed to reduce the conflicts in classification.  

The third iteration of analysis indicates that category indicated that variations seen in previous iterations 

were related to pervious and impervious percentage parameters that seemed to differ from those 

established in the scientific literature. Analysis of plans of conservation and impervious dataset 

indicated that rural residential areas in the region are dominated by large lots that go beyond the 60% 

to 80% pervious threshold proposed by the LCZ classification (Stewart and Oke 2012). To better 

interpret these perceived errors, the team incorporated the use of GIS-based impervious and pervious 

percentages to aid in the calibration of training areas applied in the machine learning process. This 

enabled the adjustment of LCZ training areas to a higher percentage of pervious cover (97%) to better 

represent the existing land cover types based on form and use. A total of four iterations were made of 

the LCZ classifications for each county, using the World Urban Database and Access Portal Tools 

(WUDAPT) methodology. The final iteration was then submitted to the LCZ Classification portal for 

accuracy evaluation (Figures  3.1 and 3.2) and publishing (Figure 3.3 and 3.4) .  
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Figure 3.1 – Boxplot indicating overall accuracy of LCZ analysis and representation of LCZ types in New Haven 
county, CT (Day 2021). Overall accuracy for county was 0.64 and aligns with accuracies achieved so far in other 

studies in the United States, ranging between 0.77 and 0.55. 
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Figure 3.2 - Boxplot indicating overall accuracy of LCZ analysis and representation of LCZ types in Fairfield county, 
CT (Miller 2021). Overall accuracy for county was 0.55 and aligns with accuracies achieved so far in other studies in 

the United States, ranging between 0.77 and 0.55. 
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Figure 3.3 – Final LCZ classification obtained for New Haven county displaying current conditions (Day 2021).   
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Figure 3.4 - Final LCZ classification obtained for Fairfield county displaying current conditions (Miller 2021). 

 

3.2. Short-term in Situ Sensor Measurements for Identified LCZs in New Haven, CT 
The sensor network that resulted from the prototype classification developed in New Haven shows the 

variations in air temperature and relative humidity across the different typologies identified (Table 3.1). 

The readings from the sensors allowed us to calculate the heat index to interpret the sensation of heat 

in each of the studied environments. The results presented in Table 3.1 indicate that humidity is an 

important factor in heat vulnerability, not seen in the remote sensing analysis. Therefore, locations 

where humidity is high resulted in a higher sensation of heat. Mean temperature readings averaged 

between 71.66- and 74.42-degrees Fahrenheit in vegetated areas, while urban settings ranged between 

73.76- and 76.11-degrees Fahrenheit. Relative humidity was lower in developed landscapes compared 
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to vegetated ones. This was not surprising as plants tend to contribute to increase humidity. Overall, 

areas with low rise development and low plants had higher heat index under mean temperature 

conditions. Under maximum temperature conditions readings showed larger variation in heat index 

results. Relative humidity was mostly between upper 90 to 100 percent, except for site OLR2 which 

reached a maximum of 73.03%. Maximum temperatures varied between 91.94- and 97.81-degrees 

Fahrenheit in developed landscapes, while vegetated locations varied between 88.71- and 96.38-

degrees Fahrenheit.  

The combination of high humidity and high temperature indicated that the highest heat indexes were 

situated in the scattered tree areas and the heavy industrial sites. Yet, the highest results seem 

surprising given the presence of trees. Equally surprising were the low results obtained for the compact 

mid-rise sites, which were only 1-degree Fahrenheit cooler than the dense tree sites. As discussed in the 

methods section some sensors malfunctioned later in the measuring campaign and the team used the 

opportunity to review some of the sites. The review found that due to limitations in installation some 

sensors were sited adjacent, but not immediately on the sites intended. This would explain results such 

as the ST1 and ST2 sites, where sensors were installed close to roadways and in parking lots adjacent to 

the site. 

Table 3.1 – Results obtained from in-loci sensors measuring air temperature and relative humidity, and derived 
heat index (August through October 2020). Mean and maximum conditions show that humidity levels play an 

important role in the sensation of heat. 

 

Further investigation is needed to understand how wind speed and direction might be playing a role in 

cooling of sites, particularly CMR1 and CMR2, both situated close to the New Haven Green. Studies 

suggest that open space can contribute to ventilation and as a result aid in the dissipation of heat. It is 

unclear if this is the factor contributing to the readings obtained. However, the team also investigated 

previous meteorological data from the New Haven airport and developed a psychrometric chart to 

investigate what types of conditions contribute to cooling in the town. Figure 3.5 shows the thermal 

sensation for a typical year in New Haven, based on the past 30 years of meteorological gathered from 

the airport’s weather station. For hot and humid days, the chart indicates that the best coping strategy 

Sensor Air Temperature Relative Humidity Heat Index Air Temperature Relative Humidity Heat Index

Heavy Industrial HI1 74.59 71.78 75.82 92.54 100.00 102.00

HI2 76.11 66.68 77.35 97.81 97.36 103.00

Compact Mid-Rise CMR1 74.91 68.52 76.02 91.94 97.16 97.00

CMR2 74.96 68.29 76.04 92.11 96.38 97.00

Open Mid-Rise OMR1 73.88 73.86 75.09 92.38 100.00 101.00

OMR2 75.18 69.36 76.43 96.65 100.00 104.00

OMR3 75.02 69.27 76.20 94.25 99.35 100.00

Compact Low Rise CLR1 75.20 68.74 80.41 94.39 99.78 101.00

CLR2 74.76 69.84 80.07 96.65 100.00 101.00

Open Low Rise OLR1 74.58 70.63 80.13 93.69 100.00 100.00

OLR2 73.99 73.03 79.74 93.1 73.03 97.00

OLR3 73.87 72.00 80.17 92.13 100.00 100.00

OLR4 74.53 70.15 80.09 92.25 99.56 100.00

Sparsely Built SB1 73.76 71.83 80.37 93.56 100.00 100.00

Low Plants LP1 73.49 74.34 80.23 92.98 100.00 101.00

LP2 73.23 76.46 81.10 94.39 100.00 105.00

Scattered Trees ST1 74.42 71.29 80.60 96.38 100.00 106.00

ST2 74.29 71.14 75.44 93.69 100.00 102.00

Dense Trees DT1 71.66 79.13 72.75 89.23 100.00 96.00

DT2 72.17 75.59 76.02 88.71 100.00 96.00

V
eg

et
at

ed
D

ev
el

o
p

ed

Mean Maximum
Local Climate Zone



26 
 

should be the promotion of natural ventilation. This result supported the team’s hypothesis that wind 

might be playing a role in the reduction of heat sensation in certain areas and the exacerbation of it in 

others. However, further investigation is needed to determine how wind circulation might be acting as a 

cooling strategy in the locations measured. 

 

Figure 3.5 – Psychrometric chart developed based on meteorological data retrieved from the New Haven airport. 
Chart indicates the number of hours in a year that are in thermal comfort, cold stress, and heat stress, and the 

coping strategies. The chart indicates natural ventilation as the most effective solution for hot days in New Haven. 

3.3. Long-term LULC Changes: National Land Cover Data Analysis 
The first step in analyzing the retrieved land cover data was to understand the magnitude of changes in 

land cover types. As seen in Graph 3.1, the deciduous forest is the most representative land cover type 

within the study area throughout the study period. As seen in Table 1, deciduous forest corresponds to 

over 45% of the land coverage of the study area. The next most representative land cover type is 

developed, open space, which covers between 14.67% (2001) to 15.14% (2016) of the area.   
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Graph 3.1 - Total area of land cover type change between years ending in 2001 and 2016, ordered from most to 
least representative typologies. 

Furthermore, Table 3.2 indicates that the greatest net gains in acreage were seen in the urbanized 

categories, particularly, developed, medium intensity (12,549 acres), open space (8,859 acres), and low 

intensity (7,904 acres). Based on the percentage the greatest gains were seen in less representative land 

cover types, such as shrub/scrub (36.99%), grassland/ herbaceous (29.75%), and developed, high 

intensity (13.33%). The greatest net losses were seen in deciduous forest (-30,073 acres) and pasture/ 

hay (-7,934 acres). The latter also saw the highest percentage of loss (-11.74%), followed by barren land 

(-6.63%), and evergreen forest (-4.93%).  

Overall, the most representative land cover types were among the typologies that saw the greatest areal 

changes. It is important to point out that combined all the developed categories indicate a total gain of 

34,031 acres of urbanized lands. In comparison, all three forested land cover types underwent losses, 
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summing a loss of approximately 31,138 acres within 15 years, though deciduous forests were by far the 

most impacted. 

Table 3.2 - Changes in area per land cover type, indicating representation per study period and losses or 
gains over time. 

 

3.4. Long-term Land Surface Temperature Changes 
As described in the methodology, land surface temperature changes were analyzed for 3-year intervals 

for the following study period, identified by the end year: 2001, 2006, 2011, 2016, 2020. The 20-year 

analysis of land surface temperature indicates that 2011 reached the hottest surface temperatures 

within the study period, as indicated in Figure 1. Further analysis regarding extreme weather events and 

weather patterns for the study period is presented in the statistics section, comparing the findings from 

the remote sensing analysis and air temperature data retrieved from the New Haven airport 

meteorological station.  

 

NLCD 

Code Land Cover Type 

Total Area 

2001 

% Total 

2001 

Total Area  

2016 

% Total  

2016 Loss/Gain 

Percent 

loss/gain 

41 Deciduous forest 876,425.75 47.86% 846,353.01 46.17% -30,072.74 -3.55% 

21 Developed, Open space 268,606.87 14.67% 277,465.97 15.14% 8,859.10 3.19% 

22 

Developed, low 

intensity 176,811.20 9.66% 184,715.74 10.08% 7,904.54 4.28% 

43 Mixed forest 122,251.88 6.68% 121,794.17 6.64% -457.72 -0.38% 

23 
Developed, medium 
intensity 108,793.40 5.94% 121,342.23 6.62% 12,548.84 10.34% 

90 Woody wetlands 101,641.56 5.55% 102,205.76 5.58% 564.20 0.55% 

81 Pasture/ hay 75,508.42 4.12% 67,574.75 3.69% -7,933.66 -11.74% 

24 
Developed, high 
intensity 30,677.84 1.68% 35,396.16 1.93% 4,718.32 13.33% 

95 

Emergent herbaceous 

wetlands 17,964.29 0.98% 17,814.23 0.97% -150.05 -0.84% 

82 Cultivated crops 16,866.12 0.92% 17,601.49 0.96% 735.37 4.18% 

42 Evergreen forest 12,935.86 0.71% 12,328.09 0.67% -607.77 -4.93% 

71 Grassland/ herbaceous 11,008.96 0.60% 15,671.71 0.85% 4,662.74 29.75% 

31 Barren land 8,708.16 0.48% 8,166.41 0.45% -541.75 -6.63% 

52 Shrub/scrub 2,979.26 0.16% 4,728.32 0.26% 1,749.06 36.99% 

 
Total area 1,831,179.58 1.00 1,833,158.05 1.00 1,978.47 
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Figure 3.6  - Maximum surface temperature reached during each study period. Higher temperatures reached 
during 2009 to 2011 period. However, 2018 to 2020 period indicates new areas where temperatures heating 
has occurred. 

Slope analysis of the maximum land surface temperature changes over time indicates the presence of 

warmer and cooler areas, as seen in Figure 2. Warming occurred primarily in western coastal towns, 

such as Greenwich, Stamford, New Canaan, Darien, and Norwalk, and north of New Haven, toward 

Hartford. In Fairfield County, Darien was the town with the highest warming, with a patch in the 

northeast part of the town warming on average 8 oF over 20 years. While Wolcott and Waterbury share 

an area that saw surface temperature increases of up to 9.25 oF. Cooling was seen along the shoreline 

of coastal towns from Westport to Madison, with significantly cooler areas present in Stratford. Fairfield 

county saw inland areas of cooling between Ridgefield and Sherman, however, the lowest surface 

temperatures were seen along the Stratford shoreline, with cooling of 7 oF on average. New Haven 

presented the most cooling in Milford, reaching approximately 8 oF lower temperatures than seen 

during the 2001 study period. 
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Figure 3.7 – Maximum surface temperature change between 1999 to 2020 in Fairfield and New Haven counties, 
CT. Map shows areas with temperature increases and decreases of up to 10 degrees Fahrenheit. Cooling areas 
were seen in the coast near the water, while areas with temperature increases were in western Fairfield and 

northeastern New Haven.  

3.5. Relationship Between LULC Changes and LST Changes Over Time 
The team applied a statistical analysis to interpret the relationship between changes in LULC and LST. 

This phase first focused on comparing the average maximum surface temperature reached by each land 

cover type for each study period. As shown in Graph 3.2, the 1999 to 2001 data showed a higher spread 

of temperature, with a larger number of outliers both for high and low temperatures. This data also 

reiterated observations made in the mapping section, indicating that study periods ending in years 2001 

and 2011 reached higher averages for all land cover categories when compared to those ending in years 

2006 and 2016. Overall, all three study periods displayed a very similar pattern with developed land 

covers consistently reaching higher temperatures. Moreover, the variation among developed types was 

consistent throughout, with the same magnitude of change in all four study periods, and higher 

temperatures seen in order from high intensity to open space developed typologies.  
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Graph 3.2 - Boxplot analysis of maximum surface variation per land cover type per study period. 

Data from the New Haven airport meteorological station was retrieved to better understand the surface 

temperature fluctuations seen in the surface temperature data for each study period (Graph 3.3). The 

data retrieved focused on the maximum air temperatures reached during the months of May through 

September of each year. Similar to the patterns seen in the remotely sensed data, air temperature data 

indicates that 2001 and 2011 were the years with highest temperature spikes. In fact, according to the 

National Weather Service, Fairfield and New Haven counties underwent 2 heat days during the 1999 to 

2001 period, 1 during the 2004 to 2006 period, 1 excessive heat day during the 2009 to 2011 ( record 

high heat index reached in this station to date),  and finally 1 excessive heat day in 2014 to 2016. More 
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importantly, though all of the study periods faced hot periods, the spikes in the 2001 and 2011 ending 

study periods confirm the data retrieved from the satellite images and give a better indication of the 

variability that occurred within the 15 years analyzed.  

 
Graph 3.3 -  Comparative maximum air temperature from May through September for each study period. Source: 

New Haven airport meteorological station. 

A linear regression was then applied to the combined LST and NLCD datasets (Graph 3.4). The statistical 

model accounts for the variability during the study period and ranks temperature changes based on the 

average temperature changes seen between the 15 years sampled, based on land cover changes. Graph 

3.4 shows that independently of 2016 being slightly cooler than 2001, overall changes from vegetated 

land covers to developed land covers resulted in increases to land surface temperatures. On the other 

hand, cooler temperatures resulted from unchanged land cover or variations within vegetated land 

covers. By far the most intense temperature increases occurred from deciduous forest (41) to 

developed, high intensity (24) which resulted in the highest temperature changes, estimated at 

approximately 5.5 oC (9.9 oF).  Loss of forest cover was consistently liked to increase in temperature, as 

well as intensification of development. The most curious findings were the reduction of temperature for 

unchanged open space and low intensity development. Further study inquiring is needed to identify the 

type of vegetation present in these types of development. As seen with the use of the LCZ classification, 

in Phases 1 and 2, Fairfield and New Haven counties have a considerable amount of tree canopy cover 

within residential properties. The findings from this phase could be hinting at the role of trees and 

vegetation as cooling mechanisms within low intensity development.  
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Graph 3.4 - Temperature variation estimates based on the average temperature changes between 1999 to 2016. 

4. Conclusion and Recommendations 
Overall, this study indicates that both Fairfield and New Haven counties have suffered losses of 

important vegetated ecosystems in the last 15 years. There are clear indications that urban heat islands 

are occurring, and surfaces are hotter over the last 20 years. Yet the results also indicate that a 

significant amount of critical landscapes remains, such as deciduous forest covers, that need to be 

preserved to ensure heat adaptation.  

The short-term analysis produced indicates that much of the dense canopy cover in the counties seems 

to be in properties classified as sparsely built. These are mostly residential areas, suggesting that 

forested areas are within private properties. As seen during this phase, sparsely built development (LCZ) 

or developed, low intensity (NLCD) has intensified over the last 5 years. The appearance of this 

classification seems to be the first indication of sprawl in some towns, followed by further intensification 

with categories such as open low rise or open midrise (developed, medium intensity) and compact low 

rise or compact midrise (developed, high intensity). With that in mind, it is important to further 

understand if the trends seen in the last 5 years will continue.  

Recommendations based on this phase are: 
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1. Communicate and propose strategies that conserve tree canopy cover within public and private 

properties.  

Plans of conservation and development should address localized incentives and approaches to protect 

existing tree canopy cover. To do so further inquiring is needed on how plans of conservation and 

development currently promote development in these areas. Furthermore, it is important to understand 

and establish how greenspace is conserved and how vegetation clearing managed in private properties 

at the municipal level. This information could guide a statewide decision-making approach towards 

conservation of vegetation to ensure the maintenance of greening. 

2. Promote the shift from Euclidean land-use planning to Form-based planning practices 

The use of the LCZ classification hints to the diversity of urban environments that exist in both counties, 

which do not respond to climate in the same way. As previously mentioned, this classification is 

modeled after design and planning fields and points to the need for decision-making that interprets our 

environments in a more holistic view, rather than strictly use-based. This suggests a needed move 

toward form-base planning codes rather than traditional Euclidean land-use planning codes that focus 

mostly on land-use rather than considering the three-dimensional aspects of our environments. The 

short-term analysis shows the diversity of urban environments present in both counties. Furthermore, 

though limited, the findings from the sensor network point to how vegetation and potentially ventilation 

could play a role in heat adaptation. The variation between heat and humidity levels indicate that some 

urbanized areas adapt better to higher temperatures than others. Though further inquiry is needed to 

understand the role of ventilation, the classification based on land-use limits decision-makers’ ability to 

think about how to better design our cities. The city of New Haven has already made advancements in 

this direction. The city’s Vision 2025 discusses the incorporation of form-based code standards to 

improve site design, furthermore, the New Haven City Plan office has already begun to explore the 

application of form-based code to address climate adaptation and sustainability (New Haven Vision 2025 

2015).  

The long-term analysis presented in this study indicate cooling in areas where vegetation cover 

increased. In the meantime, intensification and expansion of urban heat islands occurred in the western 

portion of Fairfield and inland in both counties due to development intensification in the last 20 years. 

The study also highlights that there is a critical mass of existing forested and vegetation covers in the 

state that seem to aid in cooling. However, further research needs to be done to understand the 

applicability and incorporation of heat response planning in plans of conservation and development. 

Studies in urban climatology suggest that urban heat island mitigation and adaption relies in the 

presence of contiguous greening (Debbage and Shepherd 2014). Therefore, we need to understand how 

the trends seen correspond to policies and town planning codes to better outline plans that support 

contiguous green infrastructure within the counties.  

Recommendations based on this phase are: 

3. Promote the inclusion of heat response planning as a component of plans of conservation and 

development. 

Plans currently recognize the impacts of water-related hazards, however, heat has overlapping design 

and planning considerations that could lead to adequate multi-hazard adaptation. As indicated by this 
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study vegetation, similar to flood adaption, is key to promoting heat response. Therefore, towns should 

promote the inclusion of green space as a way of supporting healthy communities. Moreover, greening 

should not be seen as limited to pockets of the town, but rather as the establishment and maintenance 

of networks of greenspace. This is beneficial for promoting permeability and ensuring that greening 

occurs continuously will support not only healthier communities, but healthier ecosystems.  

Finally, further investigation is needed to understand the rest of the state’s LULC and LST conditions. 

This study suggests that ‘heat corridors’ might be occurring along major highways and connecting to 

major cities in the state. For instance, the long-term analysis indicated heating toward the city of 

Hartford, yet the state’s capital is not contemplated in this study. Furthermore, it is unclear if the trends 

seen in both Fairfield and New Haven counties are similar in the rest of the state.  

Additional recommendation: 

4. Expansion of short-term and long-term analysis of heat to the entire state of Connecticut  

In the short-term additional towns need to be sampled to understand the localized relationships 

between air temperature, relative humidity, and wind. Strategies for adapting to heat, as shown in the 

psychrometric chart for New Haven, will likely vary for inland towns, therefore, wind might not play as 

strong role in adaptation as it might in coastal cities. A network of sensors could support localized 

decision-making that supports greening and permeability. The long-term analysis will better aid in the 

comprehension of ‘heat corridors’ and help decision-makers determine areas that require conservation 

or expansion of greening. Cities such as Hartford and New Haven have already begun efforts to improve 

urban greening, however, a larger study such as this one could support cross-municipal efforts that 

strive to improve heat response at a larger scale.  
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5. Glossary of Terms Used 
 

Fraction of Vegetation Cover (FVC) → the percentage of the ground cover that is composed of green 

vegetation compared to the total studied area. This varies seasonally, as some species of trees and 

plants lose their leaves during the colder months (late-Fall, Winter, and early-Spring), exposing barren 

and developed surfaces beneath them.  

Heat Index → a measurement that combines the effects of temperature and humidity of the air to 

estimate the average person’s level of discomfort during hot days.  

Land Surface Temperature → the sensation of how hot or cold a surface of the Earth is to the touch.  

Normalized Difference Vegetation Index (NDVI) → is an index derived from satellite images that 

quantifies vegetation density and allows us to evaluate changes to plant health over time. NDVI maps 

depict the calculated ratio between red and near infrared bands. Health vegetation shows a high 

reflectance of near infrared and low reflectance of red. Therefore, areas that display high reflectance of 

red are typically not vegetated and associated with developed and barren landscapes.  

Psychrometric Chart → a graphic representation of the relationships between temperature and 

humidity to identify environmental issues and assess design solutions.  

Remote Sensing → is the technique of acquiring information from a distance. In this study, it refers to 

information captured by sensors installed on satellites that can detect energy reflected or emitted from 

the Earth’s surface.  

Surface Emissivity → a metric to determine how much heat is emitted by a surface. 

Urban Heat Island (UHI) → refers to urban environments that are warmer than its surrounding, which 

are typically rural or less developed areas. Urban structures, such as buildings and roads, along with 

certain human activities, can absorb and re-emit the sun’s heat and sometimes even produce heat. 

Dense urban environments produce more heat than natural landscapes, which results in clusters or 

islands of hotter areas relative to vegetated and less dense surroundings.  
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