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Executive Summary

Cities across the United States are challenged to make decisions on accommodating growth and
promoting healthy communities in the face of climate change. In the last 30 years, extreme heat events
have been the deadliest weather-related hazards inthe United States. Arecent report from the Yale
Center for Climate Change and Health (Bozzi 2020) indicates that Connecticut residents are less adapted
to heatand are more vulnerable to heat-relatedillnesses under extreme heat conditions than the
average American. It alsoindicates that Connecticut has a significant proportion of the population that is
more vulnerable to heat, such as those above 65 years of age, outdoor workers, and homeless people.
More importantly, the report suggests that the pathwayto adaption should involve land use planning
and urban design.

In order to adequately address heat vulnerability, we need to understand the interactions betweenland
surfaces and temperature to support climate-oriented decision making. Climate data from weather
stations is limited in urban areas and data on air temperature are typically capturedin the shade and far
from construction. To overcome these limitations, this project is grounded in previous studies in urban
climatology and uses satellite imagery to understand the occurrence and intensification of urban heat
islands in cities. Moreover, it seeks to generate transferable knowledge to fields such as urban planning,
to support Connecticut towns in addressing and adapting to heat vulnerability.

This project combines remote sensing and localized sensor measurements to identify and understand
the relationship between temperature and land cover. It focuses on Fairfield and New Haven counties in
the state of Connecticut, with the possibility of expanding the analysis to the entire state. Ourteam
used readily available satellite data (Landsat collection) and land cover classification methods and
datasets tounderstand how changes to the landscape in these counties have impacted surface
temperature in the last 20 years. In other words, this project asked the question: what changes to the
landscape have promoted or intensified the occurrence of urban heatislands?

The findings from this study indicate that the appearance and intensification of urban heatislands in
Fairfield and New Haven counties are linked to the loss of vegetation due to expansion and
intensification of urbanization. More importantly, the study indicates that specific types of vegetation
loss, particularly forest cover, have resultedin the biggest temperature spikes within the last 20 years.
The results alsoindicate that though vegetation reduces the occurrence of urban heatislands, trees are
far more effective in cooling surfaces for the purposes of human health and well-being.



1. Introduction

Extreme heat and cold are among the leading causes of climate vulnerability in the United States due to
potential impacts on human health and well-being. Residents in Connecticut are less acclimatized to
heat, which could signify a higher risk for heat-related diseases during extreme weather events. The
occurrence of heatislands due to urbanization produce relatively warmer air temperatures near the
ground, which make urban and sub-urban areas warmer in comparison to rural areas. This project
identifies variations in surface and air temperature over time and their linkages to land cover and land
uses changes. Such observations canlead to the determination of the occurrence and intensification of
urban heat islands and are directly linked to land-use planning, health, and hazard mitigation, among
other fields of decision-making. Therefore, the results of this project are critical to support local
decision-makers in determining the thermal vulnerability of local communities in the Resilient
Connecticut project.

The main objective of this study was to map and identify areas vulnerable to extreme thermal conditions
and identify the contribution of the changes in land use and land cover to heat vulnerability. To do so,
this project was taskedto: (1) analyze land surface temperature data, acquired from satellite images, to
identify areas where heatislands are occurring; (2) understand the linkages betweenland surface
temperature (LST) changes andland use and land cover (LULC) changes, tointerpret the relationships
between thermalvariationand urbanization over the past 5- and 20-years; and (3) compare the urban
heat island intensity on human healthand well-being by using air temperature and Landsat land surface
temperature.

1.1. What is Land Surface Temperature and What isits Application?

In simple terms, land surface temperature (LST) is the temperature that any given surface of the Earth
would feel to the human touch. It varies depending on the surface, as each material differs on how it
absorbs or conducts heat. Therefore, LST is not the same as air temperature, which we are accustomed
to seeingin a weather report. Yet it is a useful and established proxy to understanding the occurrence of
urban heat islands (UHI) (Voogt and Oke 2003, Weng and Quattrochi2006). Though LST differs from air
temperature, thereis a relationship between them. For instance, imagine hovering your hand over a hot
pan. As the surface of the pan heats up, so does the air that surrounds it. Therefore, as you hover your
hand over the surface you feel the effects of the heat emitted from the pan in the air. So why not simply
measure the airtemperature? It is important to note that meteorological data is not widely available
and weather stations are typically not sitedin urban locations. Also, stations typically collect datain the
shade and do not offer long-terminformation on temperature variations in different land cover types.
Hence the use of thermal satellite data, which has been available since the early 1980s when NASA
launched Landsat satellite missions 4 and 5.

Urban heatislands (UHI) in simple terms are the effect of changes in land cover which alter surface
temperature and ultimately change the transference of heat to the air. Past studies have indicated that
UHIs are more evident within urban environments with satellite data and are strongly related to land
cover (Aniello et al. 1995, Dousset and Gourmelon 2003). Moreover, studies in heat vulnerability have
indicated that LST can be a strong predictor of heat related mortality during extreme heat events
(Johnson and Wilson 2009, Johnson, Wilson and Luber 2009, Dousset et al. 2011).



So far, the use of thermal satellite images has produced better understandings of the relationships
between urban surfaces, specifically LULC, to temperature changes in urban environments (Weng, Lu
and Schubring 2004, Yuan and Bauer 2007, Buyantuyev and Wu 2010, Zhou, Huang and Cadenasso 2011,
Zhou et al. 2014, Fu and Weng 2016). Yet, as described by Zhou et al. (2014), vegetation abundance and
impervious cover are consistently identified as the most important determinants of LST increases.
However, the simple division between ‘rural’ (vegetated)and ‘urban’ (impervious surface area)do not
account for the complexities of the land covers observed in our environments, as discussed by Stewart
and Oke (2012). With that in mind, this study goes further and uses LST and different land cover
classifications totry to better understand what types of land cover and land-uses result in higher or
lower temperature variation. This information can support decision-making that fosters conservation of
critical landscapes and supports the restorationand promotion of native greening within the state of
Connecticut.

2. Methods
2.1. Land-use and Land Cover (LULC) Classification

2.1.1. Local Climate Zones

In the first phase of the project the teamapplied the local climate zones (LCZ) classification (Stewart and
Oke 2012, Stewart, Oke and Krayenhoff 2014) to understand the current land cover types and how they
relate to surface temperature variations (Figure 2.1). The LST classificationis informed by fields such as
architecture and land use planning to understand how density, impervious cover, and presence of
vegetation affect local climate. This is not a readily available classification; however, it can inform
decision-making, particularly for towns that are moving from Euclidean basedland-use planning to form
based planning codes. However, LST is mostly focused on urban environments and does not classify
natural environments with the same level of complexity as it does developed landscapes.

The team relied on the World Urban Database and Access Portal Tools (WUDAPT) methodology
developed to systematically apply the LST classification (Ching et al 2018). WUDAPT is a machine
learning method that relies on Landsat imagery to classify existing land cover type (Bechtel et al 2019).
When the project began the team followed the workflow using Google Earth Pro and SAGA GIS, as
proposed by Bechtel et al 2019. All products produced were submitted through the WUDAPT portal for
quality assessment. However, in 2021 WUDAPT developed the LCZ generator led by a team of
researchers in Ruhr University Bochum and the team no longer relied on the previous workflow, and
followed new protocols established by Demuzere, Kittner, and Bechtel (2021). The data developed for
both Fairfield (Miller 2021) and New Haven (Day 2021) counties was submitted separatelyin the LCZ
generator and are readily available in the LCZ Generator portal (https://Icz-
generator.rub.de/submissions).

Itis important to point out that both Fairfield and New Haven counties are not densely urbanized areas
when compared to other regions in the U.S. and abroad. Therefore, not all LCZ types were identified in
the study area, as presentedin the results. For example, LCZ type 1 — Compact high-rise is not presentin
either of the studied counties, nor was LCZ type 4 — Open high-rise. Other types were alsoless prevalent
and limited the machine learning approach due to the specifications needed by the workflow to indicate
atleast 5 sample areas with a minimum of 1km?2 (247 acres).
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Built types

Definition

Land cover types Definition

|. Compact high-rise

Dense mix of tall buildings to tens of
stories. Few or no trees. Land cover
mostly paved. Concrete, steel, stone,
and glass construction materials.

Dense mix of midrise buildings (3-9
stories). Few or no trees. Land cover

" mostly paved. Stone, brick, tile, and

concrete construction materials.

Dense mix of low-rise buildings (1-3
stories). Few or no trees, Land cover
mostly paved. Stone, brick, tile, and
concrete construction materials.

Open arrangement of tall buildings to
tens of stories. Abundance of pervious
land cover (low plants, scattered
trees). Concrete, steel, stone, and
glass construction materials.

Open arrangement of midrise buildings
(3-9 stories). Abundance of pervious
land cover (low plants, scattered
trees), Concrete, steel, stone, and
glass construction materials.

Open arrangement of low-rise buildings
(1-3 stories). Abundance of pervious
land cover (low plants, scattered trees).
Wood, brick, stone, tile, and concrete
construction materials.

Dense mix of single-story buildings.
Few or no trees. Land cover mostly
hard-packed. Lightweight construction
materials (e.g., wood, thatch,
corrugated metal).

Open arrangement of large low-rise
buildings (1-3 stories). Few or no
trees. Land cover mostly paved.
Steel, concrete, metal, and stone
construction materials.

Sparse arrangement of small or
medium-sized buildings in a natural
setting. Abundance of pervious land
cover (low plants, scattered trees).

Low-rise and midrise industrial struc-
tures (towers, tanks, stacks). Few or
no trees. Land cover mostly paved
or hard-packed. Metal, steel, and
concrete construction materials.

A. Dense trees Heavily wooded landscape of
deciduous and/or evergreen trees,
Land cover mostly pervious (low
plants). Zone function is natural
forest, tree cultivation, or urban park.

Lightly wooded landscape of
deciduous and/or evergreen trees.
Land cover mostly pervious (low
plants). Zone function is natural
forest, tree cultivation, or urban park.

Open arrangement of bushes, shrubs,
and short, woody trees. Land cover
mostly pervious (bare soil or sand).
Zone function is natural scrubland or
agriculture.

D. Low plants Featureless landscape of grass or
herbaceous plants/crops. Few or
no trees. Zone function is natural
grassland, agriculture, or urban park.

E. Bare rock or paved Featureless landscape of rock or
paved cover. Few or no trees or
plants. Zone function is natural desert
(rock) or urban transportation.

F. Bare soil or sand Featureless landscape of soil or sand
cover. Few or no trees or plants,
Zone function is natural desert or
agriculture.

G. Water Large, open water bodies such as seas
and lakes, or small bodies such as
rivers, reservoirs, and lagoons.

VARIABLE LAND COVER PROPERTIES

Variable or ephemeral land cover properties that change
significantly with synoptic weather patterns, agricultural practices,
and/or seasonal cycles.

b. bare trees Leafless deciduous trees (e.g., winter).
Increased sky view factor. Reduced
albedo.

s. snow cover Snow cover >10 cm in depth. Low

admittance. High albedo.

d. dry ground Parched soil. Low admittance. Large
Bowen ratio. Increased albedo.

w. wet ground Waterlogged soil. High admittance.
Small Bowen ratio. Reduced albedo.

Figure 2.1 — Local Climate Zone classification and description (Source: Stewart and Oke 2012).



The first portion of analysis using the old WUDAPT methodology allowed our teamto analyze 10 sets of
Landsat 8 Tier 1 images, with cloud cover below 10%, for the years of 2019 (July, August, September,
and November 2019, and February 2020) and 2015 (January, March, April, August, and October). The
images used in the machine learning process, proposed by WUDAPT, used samples from various seasons
to ensure that we were classifying the climate zones correctly. During summer and spring, the lush tree
canopy cover often obscures development in satelliteimages. By using multiple seasons, we were able
to identify many areas that were initially classified as forested but were in fact sparsely built. All images
were clipped to a region of interest that encompasses a 20km buffer from the outer edges of each
county’s boundary, including surrounding towns. This approach follows the methodology outlined by
WUDAPT and allowed a better assessment of the diversity of land cover types that currently exist within
the region.

2.1.2. LCZ Heat Sensor Network

As a starting point for the LCZ classification the team established the city of New Havenas a prototype
to streamline the land cover methodology for the entire study area. This approach enabled the teamto
develop a classification library that depicts the LCZ classificationas seenin the region (Appendix 1).
Moreover, the initial classification of New Haven allowed for the deployment of a heat and humidity
sensor network to retrieve data based on different LCZ classification types identified in the city. The
network is composed of 20 sensors deployed in New Haven (Figure 2.2) and the analysis period
presentedin this report corresponds to consistent data retrieved between August 2020 and October
2020. Some sensors malfunction after the analysis period and were substituted. This allowed the team
to evaluate the distribution and adequate representation of the LCZ types identified in the region. Some
of the sensors were relocated to better represent the LCZ classes and a new round of measurements
beganin the summer of 2021.

Figure 2.2 - Sensor network deployedin New Havenin August 2020. The networkcomposed of 20sensors
represents 10 differentlocal climate zones (LCZs) identified in New Haven.

10



The dataretrieved from the sensors was extracted intabular form. The analysis focused on mean and
maximum temperatures reached during the studied period and evaluated the resulting heat index. The
heatindex is a common metric used by the CDC and National Weather Service (NWS) to determine the
sensation of heat and its potential health risks. The heat index is a useful metrics to understandthe
impacts of heat in the human body. For instance, at high temperature and high humidity the human
body struggles to perspire, therefore, it is unable to cool down.

To assess the heat index for the readings gathered the team applied a series of equations depending
upon the readings obtained. If heat index results were below 80 °F the simplified heat index equation
was applied (Equation 1). However, for heatindex above 80 °F, temperature between 80 °F and 87 °F,
and relative humidity greater than 85% the Rothfusz equation (Equation 2) was applied followed by an
adjustment added to the resulting heat index (Equation 3) (Rothfusz 1990).

HI=0.5 *{T + 61.0+ [(T-68.0)*1.2] + (RH*0.094)’

Where:
HI=Heat Index
T=Temperature (degrees Fahrenheit)

RH=Relative Humidity (percentage)
Equation 1

HI=-42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH -.00683783*T*T -
.05481717*RH*RH +.00122874*T*T*RH+.00085282*T*RH*RH -.00000199*T*T*RH*RH

Equation 2

ADJUSTMENT = [(RH-85)/10] * [(87-T)/5]

Equation 3

2.1.3. National Land Cover Dataset (NLCD)

The National Land Cover Dataset (NLCD)is a readily available land cover classification developed by the
U.S. Geological Survey (USGS) in cooperation withthe Multi-Resolution Land Characteristics Consortium
(MRLC). This dataset is derived from Landsat satellite images and land cover products result from three-
year analysis periods for the contiguous U.S. and Puerto Rico. This study used land cover products for
2001 (based on years 1999 to 2001), 2006 (based on years 2004 to 2006), 2011 (based on years 2009-
2011), and 2016 (based on years 2014-2016). The land cover products were used to develop change
analysis retrieved using two approaches: (a) the generation of aland cover change map containing
coded values for observed land cover (Table 2.1); and (b) the generation of a land cover change matrix,
indicating the areal coverage of changes for Fairfield and New Haven counties. These representations
were then used to statisticallyinterpret how land cover change might contribute to increases in surface
temperature.

11



Table 2.1 - NLCD class code correspondence table from 2001 to 2016.

NLCD class

Description code

Open water 11
Perennial ice, snow 12
Urban, recreational grasses 21
Low intensity residential 22
High intensity residential 23
Commercial, industrial, roads 24
Barerock, sand 31
Quarry, strip mine, gravel pit 31
Transitional barren 31
Deciduous forest 41
Evergreen forest 42
Mixed forest 43
Shrubland 52
Orchards, vineyards, other 82
Grasslands, herbaceous 71

LCZ and NLCD are complementary datasets that enable the understanding of the diversity of both
vegetated and developed environments. Contraryto the LCZ classification, NLCD offers a wider variety
of classifications for naturallandscapes versus urban landscapes. It divides urban environments in only
four categories, while LCZ provides ten distinct categories (Figure 2.3 and Appendix 2). Yet, as previously
mentioned, NLCD is a long standing and readily available dataset that would supportimmediate action
for decision-makers, whereas LCZ is not widely used. Furthermore, the WUDAPT methodology applied
to obtain the LCZ classification is still evolving. The machine learning approach seems torender higher
accuracyin dense urban areas and seems to be less refined to interpret suburban areas withless urban
density and a higher diversity of vegetation types. Both Fairfield and New Haven Counties did not
present categories such as compact high-rise and compact mid-rise that are presentin dense urban
areas. While open mid-rise had a limited amount of sampling available, which limit the accuracy of the
classification. Mostimportantly, the use of both datasets aids in overcoming the LCZ limitations. It also
enables the understanding of what specific types of vegetationare loss versus what specific types of
development is gained. This combination could be the key to outlining a path toheat response planning
as a component of city planning and conservation.

12



NLCD: National Landcover Dataset
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Figure 2.3 — Comparison between the National Land Cover Dataset (NLCD)classificationand the Local Climate

Zone (LCZ) classification. Categories differ in the complexity offered between natural and urbanlandscapes.
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2.2. Thermal Remote Sensing

The methodology applied for thermal remote sensing in this project is based on methods outlined by
Ermida et.al. (2020), and its resulting GEE code repository that allowed us to compute LST and
supplementary data from Landsat collections. This approach for urban heat island analysis was presented
by NASA’s Earth Science Applied Sciences program and is integrated in the Applied Remote Sensing
Training program (ARSET, 2020). Moreover, the methodology proposed by Ermida et al. (2020) is
calibrated and validated with in-situ LST measurements. The choice of a readily available methodology for
retrieving satellite remote sensing for urban heat islands allows for the replicability of this study to the
entire state of Connecticut, and ensures that the data derived is comparable to other ongoing urban heat
island analysis developed at the regionaland national scale.

The free and open sourced code usedin this study follows a processing chainin GEE to derive LST outputs
(Figure 2.4). The process chain retrieves data from different datasets available in the GEE database
repository. The chain first derives the input data needed to compute LST. Top of atmosphere (TOA)
brightness temperature is acquired using Landsat’s thermal infrared (TIR) bands. Atmospheric
contributions to the TIR observations are accounted for using Total Column Water Vapor (TCWV) values
retrieved from the NCEP/NCAR reanalysis data. Surface emissivity and NDVI are derived as part of the
input data needed to derive the LST. Cloud masking is also applied throughout the chain process, as seen
in Figure 1. We derived data from the Landsat 5 and 8 satellites Tier 1 collection, given the timeframe of
analysis (1999-2019), which is fully implemented in GEE. Adaptions made to the scriptincluded changes
to the geographic location, centered on Fairfield and New Haven counties, and date and range
parameters.

A total of 89 images were analyzed for the 5-year study period (1 January 2015 to 31 December 2019),
while 238 images were used for the 20-year analysis period. Due to the Landsat Acquisition plan, images
retrieved from both Landsat 5 and Landsat 8 were collected every 16 days and retrieval time varied
between approximately 3:15 p.m. for Landsat 5 and approximately 3:30 p.m. for Landsat 8 (+/- 15 minutes,
mean local time).
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Figure 2.4 — Google Earth Engine process chain developed by Ermida etal. (2020) to retrieve Land Surface
Temperature (LST) using the Landsat collection. Textin gray indicates the GEE dataset repository used to calculate
the process. While the textin blueindicatesthe code functions thatare embedded as modules. (Image source:
Ermidaetal. 2020).
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2.2.1. Surface Emissivity

As mentioned previously, the surface emissivity data derived in this project is a required input for the
LST retrieval algorithm used in GEE. This data is derived from the ASTER GEDv3 dataset developed by
Hulley et al. (2015). This dataset corresponds tothe average of all TIR retrievals (5 bands) over an eight -
year period. Accuracy of the emissivity data was of approximately 0.01, with spatial resolution of 100m
(Ermida et al. 2020). This process needs to account for vegetation density which is accomplished
through the incorporation of fraction of vegetation cover (FVC) (Malakar et al., 2018; Parastatidis et al.,
2017). Therefore, the emissivity outputs for this phase of the project was corrected using FVC, derived
from NDVI inputs. The GEE code provided by Ermida et al. (2020), follows the relationship proposed by
Carlsonand Ripley (1997):

2
FUC = ( NDVI — NDVI, gy, >

NDVI,og — NDVIpare

Equation 4

Surface Emissivity

Value

. Low - 0.86

Figure 2.5 - Emissivity map aligns with previous studies and indicates highest emissivity from water bodies.
Variation in emissivity is presentin more urbanized area.

As seen in Figure 2.5, the resulting emissivity map confirms findings from previous studies. The variation
in material composition and ranging albedo in urbanized areas leaves a clear signature. The results
obtained align with findings from Mitraka et al. (2011), which show that darker surface materials have
average emissivity equal to 0.979, while high-albedo construction materials have mean emissivity value
equal to 0.94. Vegetation emissivity is estimated on average to equal 0.987, while soil types have a
mean emissivity of 0.973.
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2.2.2. Normalized Difference Vegetation Index (NDVI)

NDVlis a needed input to generate the FVC, and accounts for variations in annual and inter-annual
vegetation density, averagedout in the TIR retrieval process of the ASTER GEDv3 dataset. Following the
GEE process chain, NDVI is retrieved using both Landsat derived NDVI and mean ASTER GEDv3 NDVI
(Malakar et al., 2018). The code was alteredto generate the mean NDVI for the study period (January 1,
2014 to December 31, 2019).

Figure 2.6 — Normalized difference vegetationindex (NDVI) derived in Google Earth Engine forthe period between
January 1,2014 to December 31,2019. Image is the result of the mean of all clear pixelsavailable during the study
period. Areas with low NDVIvaluesindicate no presence or low plant health.

The NDVI results (Figure 2.6) also aligned with expected findings, showing clear signatures of no
vegetationand reduced health in and around developed areas. Major expressways have clear signatures
on the landscape. Water bodies are also clearly depicted given the inexistence of vegetationin these
surfaces.

2.2.3. Land Surface Temperature (LST)

LST was retrieved by the code using the statistical mono-window (SMW) algorithm from the Climate
Monitoring Satellite Application Facility (CM-SAF). This method uses simple linear regressionto linearize
the radiative transfer equation and maintain the dependence on surface emissivity (Equation 5). In other
words, it examines the relationship between TOA brightness temperaturesineachTIR channel and LST.

Tb 1

Equation 5
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where Tb is the TOA brightness temperature in each TIR channel, € is the surface emissivity for the
channel, and Ai, Bi, and Ciare theresult of linear regressions of radiative transfer simulations for 10
classes of TCWV (i=1 through 10).

The code was alteredto derive three (3) LST outputs that could summarize the amplitude of land surface
temperature. The original code sought to represent the first clearimage for a given time range. For this
study, the code was altered to compute the mean, maximum, or minimum temperatures reached.
Additionally, the time range was broadened from days to years.

Value
— High - 141.67 F (60.93 C)

s 7oF 9.33C)

Figure 2.7 — Maximum Land Surface Temperature retrieved fromJanuary 1, 2014 to December 31, 2019. Surface
temperatures during the studied period varied vastly. Ocean water was the coolest area found, while urban
environments reached maximum of 141.7 degrees Fahrenheit.

18



LST mean

Value
High : 99.84 F (37.69 C
- erese

B ms0FE2s0)

Figure 2.8 - Mean Land Surface Temperature retrievedfrom January 1, 2014 to December31, 2019. Surface
temperatures during the studied period varied vastly. Similar to maximum temperature, ocean water was the
coolestsurface found, while urban environments reached on average of 99.84 degrees Fahrenheit.

Figure 2.7 and 2.8 depict maximum and mean LST analysis. Inboth images urban centers are highlighted
and show a clear distinction between the cool surrounding water bodies and vegetated environments
and the warmthermal signature experiencedin urban areas. However, in contrast, Figure 2.9 shows
how the urban environment during winter months can become colder than its surrounding
environments. The combined understanding of the three images retrieved in this study indicate the
thermal variation of these environments. Moreover, the contrasting low temperatures correspond to
snow accumulation and potentialimpacts of impervious covers under maximum and minimum thermal
conditions.
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Figure 2.9 — Minimum Land Surface Temperature retrieved fromJanuary1, 2014 to December 31,2019. Contrary
to maximum and mean images urbanareas were coolest surfaces found reaching -4.43 degrees Fahrenheit.
Vegetated areas displayed the highesttemperatures up to 99.84 degrees Fahrenheit.

3. Results

3.1. Short-term LULC Changes: Local Climate Zones

The first iteration of this phase of analysis showed some discrepancies with maps indicating a pessimistic
classification that found a higher level of urbanization in the analyzed region or anoverly optimistic
classification that showed a much higher level of forested cover. This iterationindicated predominance
of open low-rise and large low-rise in the coastal shoreline towns, and higher presence of sparsely built
or dense forest type land covers in the interior towns. As illustrated in Appendix 2, which shows the
iterations of classificationfor the 5-year study period for both counties. The second iteration was better
calibratedyet there were conflicts between the edge towns of the counties, which indicated variations
in interpretation from the machine learning system. Toresolve this, further training zones were created
and a revision on the parameters were proposed to reduce the conflicts in classification.

The third iteration of analysis indicates that category indicated that variations seenin previous iterations
were related to pervious and impervious percentage parameters that seemedto differ from those
establishedin the scientific literature. Analysis of plans of conservationand impervious dataset
indicated that rural residential areas in the region are dominated by large lots that go beyond the 60%
to 80% pervious threshold proposed by the LCZ classification (Stewart and Oke 2012). To better
interpret these perceived errors, the team incorporated the use of GIS-based impervious and pervious
percentages toaid in the calibration of training areas appliedin the machine learning process. This
enabled the adjustment of LCZ training areas toa higher percentage of pervious cover (97%) to better
represent the existing land cover types based on form and use. A total of four iterations were made of
the LCZ classifications for each county, using the World Urban Database and Access Portal Tools
(WUDAPT) methodology. The final iteration was then submitted to the LCZ Classification portal for
accuracy evaluation (Figures 3.1 and 3.2) and publishing (Figure 3.3and 3.4) .
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county, CT(Day 2021). Overall accuracy for county was 0.64 and aligns with accuracies achieved so far in other

studiesin the United States, ranging between0.77and 0.55.
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Figure 3.3 — Final LCZ classification obtained for New Haven countydisplaying current conditions (Day 2021).
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Figure 3.4 - Final LCZ classification obtained for Fairfield county displaying current conditions (Miller 2021).

3.2. Short-term in Situ Sensor Measurements for Identified LCZs in New Haven, CT

The sensor network that resulted from the prototype classification developed in New Havenshows the
variations in air temperature and relative humidity across the different typologies identified (Table 3.1).
The readings from the sensors allowed us to calculate the heatindex to interpret the sensation of heat
in each of the studied environments. The results presentedin Table 3.1 indicate that humidity is an
important factorin heat vulnerability, not seenin the remote sensing analysis. Therefore, locations
where humidity is high resulted in a higher sensation of heat. Mean temperature readings averaged
between 71.66-and 74.42-degrees Fahrenheit in vegetated areas, while urban settings ranged between
73.76- and 76.11-degrees Fahrenheit. Relative humidity was lower in developed landscapes compared
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to vegetated ones. This was not surprising as plants tend to contribute to increase humidity. Overall,

areas withlow rise development and low plants had higher heat index under mean temperature

conditions. Under maximum temperature conditions readings showed larger variation in heat index
results. Relative humidity was mostly between upper 90 to 100 percent, except for site OLR2 which
reached a maximum of 73.03%. Maximum temperatures varied between 91.94- and 97.81-degrees
Fahrenheit in developed landscapes, while vegetated locations varied between 88.71- and 96.38-

degrees Fahrenheit.

The combination of high humidity and high temperature indicated that the highest heat indexes were
situatedin the scatteredtree areas and the heavy industrial sites. Yet, the highest results seem
surprising given the presence of trees. Equally surprising were the low results obtained for the compact
mid-rise sites, whichwere only 1-degree Fahrenheit cooler than the dense tree sites. As discussedin the
methods section some sensors malfunctioned later in the measuring campaignand the teamused the
opportunity to review some of the sites. The review found that due to limitations in installation some
sensors were sited adjacent, but not immediately on the sites intended. This would explain results such
as the ST1 and ST2 sites, where sensors were installed close to roadways and in parking lots adjacent to
the site.

Table 3.1 — Results obtainedfromin-locisensors measuring air temperature and relative humidity, and derived
heatindex (August through October 2020). Mean and maximum conditions show that humidity levels play an
importantrole in the sensation of heat.

Developed

Vegetated

. Mean Maximum
Local Climate Zone 5 - - - . T
Sensor | Air Temperature | Relative Humidity | Heat Index Air Temperature Relative Humidity | Heat Index
Heavy Industrial HI1 74.59 71.78 75.82 92.54 100.00 102.00
HI2 76.11 66.68 77.35 97.81 97.36 103.00
Compact Mid-Rise |[CMR1 74.91 68.52 76.02 91.94 97.16 97.00
CMR2 74.96 68.29 76.04 92.11 96.38 97.00
Open Mid-Rise OMR1 73.88 73.86 75.09 92.38 100.00 101.00
OMR2 75.18 69.36 76.43 96.65 100.00 104.00
OMR3 75.02 69.27 76.20 94.25 99.35 100.00
Compact Low Rise |CLR1 75.20 68.74 80.41 94.39 99.78 101.00
CLR2 74.76 69.84 80.07 96.65 100.00 101.00
Open Low Rise OLR1 74.58 70.63 80.13 93.69 100.00 100.00
OLR2 73.99 73.03 79.74 93.1 73.03 97.00
OLR3 73.87 72.00 80.17 92.13 100.00 100.00
OLR4 74.53 70.15 80.09 92.25 99.56 100.00
Sparsely Built SB1 73.76 71.83 80.37 93.56 100.00 100.00
Low Plants LP1 73.49 74.34 80.23 92.98 100.00 101.00
LP2 73.23 76.46 81.10 94.39 100.00 105.00
Scattered Trees ST1 74.42 71.29 80.60 96.38 100.00 106.00
ST2 74.29 71.14 75.44 93.69 100.00 102.00
Dense Trees DT1 71.66 79.13 72.75 89.23 100.00 96.00
DT2 72.17 75.59 76.02 88.71 100.00 96.00

Further investigationis needed to understand how wind speed and direction might be playing a role in
cooling of sites, particularly CMR1 and CMR?2, both situated close to the New Haven Green. Studies
suggest that open space can contribute to ventilation and as a result aid in the dissipation of heat. It is
unclear if this is the factor contributing to the readings obtained. However, the teamalso investigated
previous meteorological data from the New Haven airport and developed a psychrometric chart to
investigate what types of conditions contribute to cooling in the town. Figure 3.5 shows the thermal
sensation for a typical yearin New Haven, based on the past 30 years of meteorological gathered from
the airport’s weather station. For hot and humid days, the chartindicates that the best coping strategy
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should be the promotion of naturalventilation. This result supported the team’s hypothesis that wind
might be playing a role in the reduction of heat sensationin certain areas andthe exacerbation of it in
others. However, further investigationis needed to determine how wind circulation might be actingas a
cooling strategyin the locations measured.
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Figure 3.5 —Psychrometricchart developedbased on meteorological data retrieved from the New Havenairport.
Chartindicatesthe numberof hoursin ayear thatare in thermalcomfort, coldstress, and heat stress, and the
coping strategies. The chartindicates natural ventilationas the most effective solutionfor hot days in New Haven.

3.3. Long-term LULC Changes: National Land Cover Data Analysis

The first stepin analyzing the retrieved land cover data was tounderstand the magnitude of changes in
land cover types. As seenin Graph 3.1, the deciduous forest is the most representative land cover type
within the study area throughout the study period. As seenin Table 1, deciduous forest corresponds to
over 45% of the land coverage of the study area. The next most representative land cover type is
developed, open space, which covers between 14.67% (2001) to 15.14% (2016) of the area.
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Graph 3.1 - Total area of land cover type change betweenyears endingin 2001 and 2016, ordered from most to
least representative typologies.

Furthermore, Table 3.2 indicates that the greatest net gains in acreage were seenin the urbanized
categories, particularly, developed, medium intensity (12,549 acres), open space (8,859 acres), and low
intensity (7,904 acres). Based onthe percentage the greatest gains were seenin less representative land
cover types, such as shrub/scrub (36.99%), grassland/ herbaceous (29.75%), and developed, high
intensity (13.33%). The greatest net losses were seenin deciduous forest (-30,073 acres) and pasture/
hay (-7,934 acres). The latter also saw the highest percentage of loss (-11.74%), followed by barrenland
(-6.63%), and evergreen forest (-4.93%).

Overall, the most representative land cover types were among the typologies that saw the greatest areal
changes. Itis important to point out that combined all the developed categories indicate a total gain of
34,031 acres of urbanized lands. In comparison, all three forested land cover types underwent losses,
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summing a loss of approximately 31,138 acres within 15 years, though deciduous forests were by far the
most impacted.

Table 3.2 - Changes in area per land cover type, indicating representation per study period and losses or

gains over time.

Total Area % Total | TotalArea % Total
NLCD Percent
Code | Land Cover Type 2001 2001 2016 2016 Loss/Gain loss/gain
41 | Deciduousforest 876,425.75 | 47.86% 846,353.01 46.17% | -30,072.74 -3.55%
21 | Developed, Openspace 268,606.87 14.67% 277,465.97 15.14% 8,859.10 3.19%
Developed, low
22 | intensity 176,811.20 9.66% 184,715.74 10.08% 7,904.54 4.28%
43 | Mixed forest 122,251.88 6.68% 121,794.17 6.64% -457.72 -0.38%
Developed, medium
23 | intensity 108,793.40 5.94% 121,342.23 6.62% 12,548.84 10.34%
90 | Woody wetlands 101,641.56 5.55% 102,205.76 5.58% 564.20 0.55%
81 | Pasture/hay 75,508.42 4.12% 67,574.75 3.69% -7,933.66 | -11.74%
Developed, high
24 | intensity 30,677.84 1.68% 35,396.16 1.93% 4,718.32 13.33%
Emergent herbaceous
95 | wetlands 17,964.29 0.98% 17,814.23 0.97% -150.05 -0.84%
82 | Cultivated crops 16,866.12 0.92% 17,601.49 0.96% 735.37 4.18%
42 | Evergreen forest 12,935.86 0.71% 12,328.09 0.67% -607.77 -4.93%
71 | Grassland/ herbaceous 11,008.96 0.60% 15,671.71 0.85% 4,662.74 29.75%
31 | Barrenland 8,708.16 0.48% 8,166.41 0.45% -541.75 -6.63%
52 | Shrub/scrub 2,979.26 0.16% 4,728.32 0.26% 1,749.06 | 36.99%
Total area 1,831,179.58 1.00 | 1,833,158.05 1.00 1,978.47

3.4. Long-term Land Surface Temperature Changes

As described in the methodology, land surface temperature changes were analyzed for 3-year intervals

for the following study period, identified by the end year: 2001, 2006, 2011, 2016, 2020. The 20-year
analysis of land surface temperature indicates that 2011 reached the hottest surface temperatures

within the study period, as indicated in Figure 1. Further analysis regarding extreme weather events and
weather patterns for the study period is presentedin the statistics section, comparing the findings from
the remote sensing analysis and air temperature data retrieved from the New Haven airport
meteorological station.

28




1999-2001

o

2004-2006

Maximum Surface Temperature
—_— High: 141 47 (0 F)

- Low 2975(oF)

Figure 3.6 - Maximum surfacetemperature reached duringeachstudy period. Higher temperatures reached
during 2009to 2011 period. However, 2018 to 2020 period indicates new areas where temperatures heating
hasoccurred.

Slope analysis of the maximum land surface temperature changes over time indicates the presence of
warmer and cooler areas, as seenin Figure 2. Warming occurred primarily in western coastal towns,
such as Greenwich, Stamford, New Canaan, Darien, and Norwalk, and north of New Haven, toward
Hartford. In Fairfield County, Darien was the town with the highest warming, witha patch in the
northeast part of the town warming on average 8 oF over 20 years. While Wolcott and Waterburyshare
an area that saw surface temperature increases of up to 9.25 oF. Cooling was seen along the shoreline
of coastaltowns from Westport to Madison, with significantly cooler areas present in Stratford. Fairfield
county saw inland areas of cooling between Ridgefield and Sherman, however, the lowest surface
temperatures were seen along the Stratford shoreline, with cooling of 7 oF on average. New Haven
presented the most cooling in Milford, reaching approximately 8 °F lower temperatures thanseen
during the 2001 study period.
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Figure 3.7 — Maximum surface temperature change between 1999 to 2020in Fairfield and New Haven counties,
CT. Map shows areas with temperatureincreases and decreases of up to 10 degrees Fahrenheit. Cooling areas
were seenin the coast nearthe water, while areas with temperature increaseswerein western Fairfield and
northeastern New Haven.

3.5. Relationship Between LULC Changes and LST Changes Over Time

The team applied a statistical analysis tointerpret the relationship between changesin LULC and LST.
This phase first focused on comparing the average maximum surface temperature reached by each land
cover type for each study period. As shown in Graph 3.2, the 1999 to 2001 data showed a higher spread
of temperature, with a larger number of outliers both for high and low temperatures. This data also
reiterated observations made in the mapping section, indicating that study periods ending in years 2001
and 2011 reached higher averages for all land cover categories when compared to those ending in years
2006 and 2016. Overall, all three study periods displayed a very similar pattern with developed land
covers consistently reaching higher temperatures. Moreover, the variationamong developed types was
consistent throughout, with the same magnitude of change in all four study periods, and higher
temperatures seenin order from high intensity to open space developed typologies.
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Graph 3.2 - Boxplot analysis of maximum surface variation perland cover type per study period.
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Data from the New Haven airport meteorological station was retrieved to better understand the surface
temperature fluctuations seenin the surface temperature data for each study period (Graph 3.3). The
data retrieved focused on the maximum air temperatures reached during the months of May through
September of each year. Similar to the patterns seenin the remotely sensed data, air temperature data
indicates that 2001 and 2011 were the years with highest temperature spikes. Infact, according to the
National Weather Service, Fairfield and New Haven counties underwent 2 heat days during the 1999 to
2001 period, 1 during the 2004 to 2006 period, 1 excessive heat day during the 2009 to 2011 ( record
high heat index reached in this stationto date), and finally 1 excessive heat day in 2014 to 2016. More
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importantly, though all of the study periods faced hot periods, the spikes in the 2001 and 2011 ending
study periods confirm the data retrieved from the satellite images and give a better indication of the
variability that occurred within the 15 years analyzed.
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Graph 3.3 - Comparative maximum air temperature from May through September foreachstudy period. Source:
New Haven airport meteorological station.

A linear regression was then applied to the combined LST and NLCD datasets (Graph 3.4). The statistical
model accounts for the variability during the study period and ranks temperature changes based on the
average temperature changes seen betweenthe 15 years sampled, based on land cover changes. Graph
3.4 shows that independently of 2016 being slightly cooler than 2001, overall changes from vegetated
land covers to developed land covers resultedin increases toland surface temperatures. Onthe other
hand, cooler temperatures resulted from unchanged land cover or variations within vegetated land
covers. By far the most intense temperature increases occurred from deciduous forest (41) to
developed, high intensity (24) which resultedin the highest temperature changes, estimated at
approximately 5.5 0C (9.9 oF). Loss of forest cover was consistently liked to increase in temperature, as
well as intensification of development. The most curious findings were the reduction of temperature for
unchanged open space and low intensity development. Further study inquiring is needed to identify the
type of vegetation present in these types of development. As seen with the use of the LCZ classification,
in Phases 1 and 2, Fairfield and New Haven counties have a considerable amount of tree canopy cover
within residential properties. The findings from this phase could be hinting at the role of trees and
vegetation as cooling mechanisms within low intensity development.
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Graph 3.4 - Temperature variation estimates based on the average temperature changes between 1999to 2016.

4. Conclusion and Recommendations

Overall, this study indicates that both Fairfield and New Haven counties have suffered losses of
important vegetated ecosystems inthe last 15 years. There are clear indications that urban heat islands
are occurring, and surfaces are hotter over the last 20 years. Yet the results alsoindicate that a
significant amount of critical landscapes remains, such as deciduous forest covers, that need to be
preservedto ensure heat adaptation.

The short-term analysis produced indicates that much of the dense canopy cover in the counties seems
to be in properties classified as sparsely built. These are mostly residential areas, suggesting that
forested areas are within private properties. As seen during this phase, sparsely built development (LCZ)
or developed, low intensity (NLCD) has intensified over the last 5 years. The appearance of this
classification seems tobe the first indication of sprawlin some towns, followed by further intensification
with categories such as open low rise or open midrise (developed, medium intensity) and compact low
rise or compact midrise (developed, high intensity). With thatin mind, it is important to further
understandif the trends seenin the last 5 years will continue.

Recommendations based on this phase are:
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1. Communicate and propose strategies that conserve tree canopycover within publicand private
properties.

Plans of conservation and development should address localized incentives and approaches to protect
existing tree canopy cover. To do sofurther inquiring is needed on how plans of conservation and
development currently promote development in these areas. Furthermore, it is important to understand
and establish how greenspace is conserved and how vegetation clearing managed in private properties
at the municipal level. This information could guide a statewide decision-making approach towards
conservation of vegetationto ensure the maintenance of greening.

2. Promote theshift from Euclidean land-use planningto Form-based planningpractices

The use of the LCZ classification hints to the diversity of urban environments that exist in both counties,
which do not respond to climatein the same way. As previously mentioned, this classificationis
modeled after designand planning fields and points to the need for decision-making that interprets our
environments in a more holistic view, rather than strictly use-based. This suggests a needed move
toward form-base planning codes rather than traditional Euclidean land-use planning codes that focus
mostly on land-use rather than considering the three-dimensional aspects of our environments. The
short-term analysis shows the diversity of urban environments presentin both counties. Furthermore,
though limited, the findings from the sensor network point to how vegetationand potentially ventilation
could play a role in heat adaptation. The variation between heat and humidity levels indicate that some
urbanized areas adapt better to higher temperatures than others. Though further inquiry is needed to
understandthe role of ventilation, the classification based on land-use limits decision-makers’ ability to
think about how to better design our cities. The city of New Haven has already made advancements in
this direction. The city’s Vision 2025 discusses the incorporation of form-based code standards to
improve site design, furthermore, the New Haven City Plan office has already begun to explore the
application of form-based code to address climate adaptation and sustainability (New Haven Vision 2025
2015).

The long-term analysis presented in this study indicate cooling in areas where vegetation cover
increased. Inthe meantime, intensificationand expansion of urban heat islands occurred in the western
portion of Fairfield and inland in both counties due to development intensification in the last 20 years.
The study also highlights that there is a critical mass of existing forested and vegetation covers in the
state that seemtoaid in cooling. However, further research needs to be done to understand the
applicability and incorporation of heat response planning in plans of conservationand development.
Studies in urban climatology suggest that urban heatisland mitigation and adaption relies in the
presence of contiguous greening (Debbage and Shepherd 2014). Therefore, we need to understand how
the trends seen correspond to policies and town planning codes to better outline plans that support
contiguous greeninfrastructure within the counties.

Recommendations based on this phase are:

3. Promotetheinclusion of heatresponse planning as acomponent of plans of conservation and
development.

Plans currently recognize the impacts of water-related hazards, however, heat has overlapping design
and planning considerations that could lead to adequate multi-hazard adaptation. As indicated by this
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study vegetation, similar toflood adaption, is key to promoting heat response. Therefore, towns should
promote the inclusion of greenspace as a way of supporting healthy communities. Moreover, greening
should not be seenas limited to pockets of the town, but rather as the establishment and maintenance
of networks of greenspace. This is beneficial for promoting permeability and ensuring that greening
occurs continuously will support not only healthier communities, but healthier ecosystems.

Finally, further investigationis needed to understand the rest of the state’s LULC and LST conditions.
This study suggests that ‘heat corridors’ might be occurring along major highways and connecting to
major cities in the state. For instance, the long-term analysis indicated heating toward the city of
Hartford, yet the state’s capital is not contemplated in this study. Furthermore, it is unclear if the trends
seenin both Fairfield and New Haven counties are similarin the rest of the state.

Additional recommendation:
4. Expansionofshort-termand long-termanalysis of heat to the entire state of Connecticut

In the short-term additional towns need to be sampled to understand the localized relationships
between air temperature, relative humidity, and wind. Strategies for adapting to heat, as shown in the
psychrometric chart for New Haven, will likely vary for inland towns, therefore, wind might not play as
strong role in adaptation as it might in coastal cities. A network of sensors could support localized
decision-making that supports greening and permeability. The long-term analysis will better aid in the
comprehension of ‘heat corridors’ and help decision-makers determine areas that require conservation
or expansion of greening. Cities such as Hartford and New Haven have already begun efforts to improve
urban greening, however, a larger study such as this one could support cross-municipal efforts that
strive to improve heat response at a larger scale.
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5. Glossary of Terms Used

Fraction of Vegetation Cover (FVC) = the percentage of the ground cover that is composed of green
vegetation compared to the total studied area. This varies seasonally, as some species of trees and
plants lose their leaves during the colder months (late-Fall, Winter, and early-Spring), exposing barren
and developed surfaces beneaththem.

HeatIndex > a measurement that combines the effects of temperature and humidity of the air to
estimate the average person’s level of discomfort during hot days.

Land Surface Temperature - the sensation of how hot or cold a surface of the Earthis to the touch.

Normalized Difference Vegetation Index (NDVI) - is an index derived from satellite images that
guantifies vegetation density and allows us to evaluate changes to plant health over time. NDVI maps
depict the calculated ratio between red and near infrared bands. Health vegetation shows a high
reflectance of near infrared and low reflectance of red. Therefore, areas that display high reflectance of
red are typically not vegetated and associated with developed and barren landscapes.

Psychrometric Chart - a graphic representation of the relationships between temperature and
humidity to identify environmental issues and assess design solutions.

Remote Sensing = is the technique of acquiring information from a distance. Inthis study, it refers to
information captured by sensors installed on satellites that can detect energy reflected or emitted from
the Earth’s surface.

Surface Emissivity 2 a metric to determine how much heat is emitted by a surface.

Urban Heat Island (UHI) 2 refers tourban environments that are warmer than its surrounding, which
are typically rural or less developed areas. Urbanstructures, such as buildings and roads, along with
certain human activities, canabsorb and re-emit the sun’s heat and sometimes even produce heat.
Dense urban environments produce more heat than natural landscapes, which results in clusters or
islands of hotter areas relative to vegetated andless dense surroundings.
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