Estimating the Annual Exceedance Probability of Water Levels and Wave Heights from High Resolution Coupled Wave-Circulation Models in Long Island Sound

Understanding the risk posed by extreme storm events and accurate assessment of the flood risk is crucial for the successful management of the coastal communities using increasing resiliency. There are only a few available tide gauge, buoy, and storm sensor data in the Long Island Sound to project the extreme sea level statistics using the observed records available to determine the level of risk along the Connecticut coastline accurately. In this work, we reproduced the highest 44 storms between 1950-2018 using a coupled circulation and wave model. The modeled events are fit to a probability distribution to statistically estimate the annual exceedance probabilities and return periods for expected storms. In addition to evaluating historical risks, we also added a sea-level height offset of 0.5 m for 2050 estimates in order to examine the effect of rising sea-levels on the analysis. We find that sea-level rise reduces the return period of a 10-year storm to two years. We advise periodically updating this work as improved sea-level rise projections become available.

Link: https://doi.org/10.3390/jmse8070475
Town: None Assigned
Focus Area: Flood and Sea Level Rise
Type: Publications and Reports

This entry was posted in .

Leave a Reply